首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms
  • 本地全文:下载
  • 作者:Bogdan Trawiński ; Magdalena Smętek ; Zbigniew Telec
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2012
  • 卷号:22
  • 期号:4
  • DOI:10.2478/v10006-012-0064-z
  • 出版社:De Gruyter Open
  • 摘要:In the paper we present some guidelines for the application of nonparametric statistical tests and post-hoc procedures devised to perform multiple comparisons of machine learning algorithms. We emphasize that it is necessary to distinguish between pairwise and multiple comparison tests. We show that the pairwise Wilcoxon test, when employed to multiple comparisons, will lead to overoptimistic conclusions. We carry out intensive normality examination employing ten different tests showing that the output of machine learning algorithms for regression problems does not satisfy normality requirements. We conduct experiments on nonparametric statistical tests and post-hoc procedures designed for multiple 1 ×N and N×N comparisons with six different neural regression algorithms over 29 benchmark regression data sets. Our investigation proves the usefulness and strength of multiple comparison statistical procedures to analyse and select machine learning algorithms
  • 关键词:machine learning; nonparametric statistical tests; statistical regression; neural networks; multiple comparison tests
国家哲学社会科学文献中心版权所有