首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Data-driven models for fault detection using kernel PCA: A water distribution system case study
  • 本地全文:下载
  • 作者:Adam Nowicki ; Michał Grochowski ; Kazimierz Duzinkiewicz
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2012
  • 卷号:22
  • 期号:4
  • DOI:10.2478/v10006-012-0070-1
  • 出版社:De Gruyter Open
  • 摘要:Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system—the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system’s framework is followed by evaluation of its performance. Simulations prove that the presented approach is both flexible and efficient.
  • 关键词:machine learning; kernel PCA; fault detection; monitoring; water leakage detection
国家哲学社会科学文献中心版权所有