Background: Population pharmacokinetic models combined with multiple sets of age–concentration biomonitoring data facilitate back-calculation of chemical uptake rates from biomonitoring data.
Objectives: We back-calculated uptake rates of PBDEs for the Australian population from multiple biomonitoring surveys (top-down) and compared them with uptake rates calculated from dietary intake estimates of PBDEs and PBDE concentrations in dust (bottom-up).
Methods: Using three sets of PBDE elimination half-lives, we applied a population pharmacokinetic model to the PBDE biomonitoring data measured between 2002–2003 and 2010–2011 to derive the top-down uptake rates of four key PBDE congeners and six age groups. For the bottom-up approach, we used PBDE concentrations measured around 2005.
Results: Top-down uptake rates of Σ4BDE (the sum of BDEs 47, 99, 100, and 153) varied from 7.9 to 19 ng/kg/day for toddlers and from 1.2 to 3.0 ng/kg/day for adults; in most cases, they were—for all age groups—higher than the bottom-up uptake rates. The discrepancy was largest for toddlers with factors up to 7–15 depending on the congener. Despite different elimination half-lives of the four congeners, the age–concentration trends showed no increase in concentration with age and were similar for all congeners.
Conclusions: In the bottom-up approach, PBDE uptake is underestimated; currently known pathways are not sufficient to explain measured PBDE concentrations, especially in young children. Although PBDE exposure of toddlers has declined in the past years, pre- and postnatal exposure to PBDEs has remained almost constant because the mothers’ PBDE body burden has not yet decreased substantially.
Citation: Gyalpo T, Toms LM, Mueller JF, Harden FA, Scheringer M, Hungerbühler K. 2015. Insights into PBDE uptake, body burden, and elimination gained from Australian age–concentration trends observed shortly after peak exposure. Environ Health Perspect 123:978–984; http://dx.doi.org/10.1289/ehp.1408960
Address correspondence to M. Scheringer, Safety and Environmental Technology Group, ETH Zürich, Vladimir-Prelog-Weg 1, CH-8093 Zürich, Switzerland. Telephone: 41 44 632 30 62. E-mail: scheringer@chem.ethz.ch
The authors declare they have no actual or potential competing financial interests.
Received: 15 July 2014 Accepted: 10 March 2015 Advance Publication: 13 March 2015 Final Publication: 1 October 2015
Note to readers with disabilities: EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov . Our staff will work with you to assess and meet your accessibility needs within 3 working days.
Supplemental Material PDF (933 KB)Note to readers with disabilities: EHP has provided a 508-conformant table of contents summarizing the Supplemental Material for this article (see below) so readers with disabilities may determine whether they wish to access the full, nonconformant Supplemental Material. If you need assistance accessing this or any other content on this site, please contact ehp508@niehs.nih.gov . Our staff will work with you to assess and meet your accessibility needs within 3 working days.
Supplemental Table of Contents PDF (114 KB)