首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013
  • 本地全文:下载
  • 作者:Joan A. Casey ; Elizabeth L. Ogburn ; Sara G. Rasmussen
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2015
  • 卷号:123
  • 期号:11
  • 页码:1130
  • DOI:10.1289/ehp.1409014
  • 出版社:OCR Subscription Services Inc
  • 摘要:

    Background: Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP).

    Objectives: We evaluated predictors of indoor radon concentrations.

    Methods: Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells.

    Results: Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories ( p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong.

    Conclusions: Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental measurement of radon, as well as building features unavailable for this analysis.

    Citation: Casey JA, Ogburn EL, Rasmussen SG, Irving JK, Pollak J, Locke PA, Schwartz BS. 2015. Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environ Health Perspect 123:1130–1137;  http://dx.doi.org/10.1289/ehp.1409014

    Address correspondence to B.S. Schwartz, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Room W7041, Baltimore, MD 21205 USA. Telephone: (410) 955-4158. E-mail: bschwar1@jhu.edu

    We thank R.K. Lewis at the Pennsylvania Department of Environmental Protection, who facilitated the acquisition of the radon data. We also thank J.M. Crisp, who assisted with the assembling and cleaning of the Marcellus well data, and R.D. Peng, who provided statistical support.

    This research was supported in part by the National Institutes of Health (grant R21 ES023675).

    The authors declare they have no actual or potential competing financial interests.

    Received: 30 July 2014 Accepted: 31 March 2015 Advance Publication: 9 April 2015 Final Publication: 1 November 2015

    Note to readers with disabilities: EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov . Our staff will work with you to assess and meet your accessibility needs within 3 working days.

    Supplemental Material PDF (343 KB)

    Note to readers with disabilities: EHP has provided a 508-conformant table of contents summarizing the Supplemental Material for this article (see below) so readers with disabilities may determine whether they wish to access the full, nonconformant Supplemental Material. If you need assistance accessing this or any other content on this site, please contact ehp508@niehs.nih.gov . Our staff will work with you to assess and meet your accessibility needs within 3 working days.

    Supplemental Table of Contents PDF (107 KB)

国家哲学社会科学文献中心版权所有