Background: Carcinogenic hexavalent chromium [Cr(VI)] requires cellular reduction to generate DNA damage. Metabolism of Cr(VI) by its principal reducer ascorbate (Asc) lacks a Cr(V) intermediate, which is abundant in reactions with a minor reducing agent, glutathione. Cultured cells are widely used in mechanistic studies of Cr(VI) toxicity; however, they typically contain < 1% of normal Asc levels. Asc deficiency is also expected to diminish protection against reactive oxygen species.
Objectives: We assessed how the presence of Asc in cells affects their stress signaling and survival responses to chromate.
Methods: We investigated the effects of Asc restoration in human lung H460 cells and normal human lung fibroblasts on the activation and functional role of ATM kinase, which controls DNA damage responses involving several hundreds of proteins.
Results: Treatment of standard cultures with Cr(VI) strongly activated ATM, as indicated by its automodification at Ser1981 and by phosphorylation of checkpoint kinase 2 (CHK2) and chromatin/transcription regulator KRAB-associated protein 1 (KAP1). Confirming the importance of activated ATM, its inhibition impaired replication recovery and clonogenic survival. In contrast, fully Asc-restored cells lacked ATM activation by Cr(VI), and ATM silencing produced no significant effects on p53 stabilization, apoptosis, replication recovery, or clonogenic survival. Dose dependence studies found a close correlation between ATM activation and the extent of Cr(VI) reduction by glutathione.
Conclusions: Asc restoration in cultured cells dramatically altered their stress responses to Cr(VI) by preventing activation of the oxidant-sensitive ATM network. We suggest that toxicogenomic and other cell response-based approaches likely underestimate Cr(VI) genotoxicity when standard ATM-activating carcinogens are used as references.
Citation: Luczak MW, Green SE, Zhitkovich A. 2016. Different ATM signaling in response to chromium(VI) metabolism via ascorbate and nonascorbate reduction: implications for in vitro models and toxicogenomics. Environ Health Perspect 124:61–66; http://dx.doi.org/10.1289/ehp.1409434
Address correspondence to A. Zhitkovich, Brown University, Department of Pathology and Laboratory Medicine, 70 Ship St., Room 507, Providence, RI 02912 USA. Telephone: (401) 863-2912. E-mail: anatoly_zhitkovich@brown.edu
This work was supported by grant ES008786 from the National Institute of Environmental Health Sciences, National Institutes of Health.
The authors declare they have no actual or potential competing financial interests.
Received: 5 November 2014 Accepted: 13 May 2015 Advance Publication: 15 May 2015 Final Publication: 1 January 2016
Note to readers with disabilities: EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov . Our staff will work with you to assess and meet your accessibility needs within 3 working days.