In the context of language recognition, we demonstrate the superiority of streaming property testers against streaming algorithms and property testers, when they are not combined. Initiated by Feigenbaum et al., a streaming property tester is a streaming algorithm recognizing a language under the property testing approximation: it must distinguish inputs of the language from those that are -far from it, while using the smallest possible memory (rather than limiting its number of input queries).
Our main result is a streaming -property tester for visibly pushdown languages (VPL) with one-sided error using memory space pol y (( log n ) ) .
This constructions relies on a (non-streaming) property tester for weighted regular languages based on a previous tester by Alon et al. We provide a simple application of this tester for streaming testing special cases of instances of VPL that are already hard for both streaming algorithms and property testers.
Our main algorithm is a combination of an original simulation of visibly pushdown automata using a stack with small height but possible items of linear size. In a second step, those items are replaced by small sketches. Those sketches relies on a notion of suffix-sampling we introduce. This sampling is the key idea connecting our streaming tester algorithm to property testers.