首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Are Few Bins Enough: Testing Histogram Distributions
  • 本地全文:下载
  • 作者:Clement Canonne
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2015
  • 卷号:2015
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    A probability distribution over an ordered universe [ n ] = 1 n is said to be a k -histogram if it can be represented as a piecewise-constant function over at most k contiguous intervals. We study the following question: given samples from an arbitrary distribution D over [ n ] , one must decide whether D is a k -histogram, or is far in 1 distance from any such succinct representation. We obtain a sample and time-efficient algorithm for this problem, complemented by a nearly-matching information-theoretic lower bound on the number of samples required for this task. Our results significantly improve on the previous state-of-the-art, due to Indyk, Levi, and Rubinfeld (2012) and Canonne, Diakonikolas, Gouleakis, and Rubinfeld (2015).

  • 关键词:distribution testing ; histograms ; Probability distributions ; Property Testing
国家哲学社会科学文献中心版权所有