首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Recommendation System for High Utility Itemsets over Incremental Dataset
  • 本地全文:下载
  • 作者:J K Kavitha ; U Kanimozhi ; D Manjula
  • 期刊名称:International Journal of Innovative Research in Science, Engineering and Technology
  • 印刷版ISSN:2347-6710
  • 电子版ISSN:2319-8753
  • 出版年度:2015
  • 卷号:4
  • 期号:3
  • 页码:884
  • DOI:10.15680/IJIRSET.2015.0403012
  • 出版社:S&S Publications
  • 摘要:Mining high utility itemsets has gained much significance in the recent years. When the data arrivessporadically, incremental and interactive utility mining approaches can be adopted to handle users‟ dynamicenvironmental needs and avoid redundancies, using previous data structures and mining results. The dependence onrecommendation systems has exponentially risen since the advent of search engines. This paper proposes a model forbuilding a recommendation system that suggests high utility itemsets over dynamic datasets for a location predictionstrategy to predict users‟ trajectories using the Fast Update Utility Pattern Tree (FUUP) approach. Throughcomprehensive evaluations by experiments this scheme has shown to deliver excellent performance.
  • 关键词:Data mining; Utility Mining; Incremental Mining; Items recommendation; Semantic prediction
国家哲学社会科学文献中心版权所有