期刊名称:International Journal of Multimedia and Ubiquitous Engineering
印刷版ISSN:1975-0080
出版年度:2015
卷号:10
期号:5
页码:383-394
DOI:10.14257/ijmue.2015.10.5.36
出版社:SERSC
摘要:To further enhance the distribution uniformity and extensiveness of the solution sets and to ensure effective convergence of the solution sets to the Pareto front, we proposed a MOEA approach based on a clustering mechanism. We named this approach improved multi-objective evolutionary algorithm (LMOEA). This algorithm uses a clustering technology to compute and maintain the distribution and diversity of the solution sets. A fuzzy C-means clustering algorithm is used for clustering individuals. Finally, the LMOEA is applied to solve the classical multi-objective knapsack problems. The algorithm performance was evaluated using convergence and diversity indicators. The proposed algorithm achieved significant improvements in terms of algorithm convergence and population diversity compared with the classical NSGA-II and the MOEA/D.