首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A Novel Hybrid Optimization Algorithm Based on GA and ACO for Solving Complex Problem
  • 本地全文:下载
  • 作者:Bin Gao ; Jing-Hua Zhu ; Wen-chang Lang
  • 期刊名称:International Journal of Multimedia and Ubiquitous Engineering
  • 印刷版ISSN:1975-0080
  • 出版年度:2015
  • 卷号:10
  • 期号:8
  • 页码:243-252
  • DOI:10.14257/ijmue.2015.10.8.25
  • 出版社:SERSC
  • 摘要:In allusion to the deficiencies of the ant colony optimization algorithm for solving the complex problem, the genetic algorithm is introduced into the ant colony optimization algorithm in order to propose a novel hybrid optimization (NHGACO) algorithm in this paper. In the NHGACO algorithm, the genetic algorithm is used to update the global optimal solution and the ant colony optimization algorithm is used to dynamically balance the global search ability and local search ability in order to improve the convergence speed. Finally, some complex benchmark functions are selected to prove the validity of the proposed NHGACO algorithm. The experiment results show that the proposed NHGACO algorithm can obtain the global optimal solution and avoid the phenomena of the stagnation, and take on the fast convergence and the better robustness.
  • 关键词:Genetic algorithm; Ant colony optimization algorithm; Hybrid optimization ; algorithm; pheromone; benchmark functions
国家哲学社会科学文献中心版权所有