首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Research on Kruskal Crossover Genetic Algorithm for Multi-Objective Logistics Distribution Path Optimization
  • 本地全文:下载
  • 作者:Yan Zhang ; Xing-yi Wu ; Oh-kyoung Kwon
  • 期刊名称:International Journal of Multimedia and Ubiquitous Engineering
  • 印刷版ISSN:1975-0080
  • 出版年度:2015
  • 卷号:10
  • 期号:8
  • 页码:367-378
  • DOI:10.14257/ijmue.2015.10.8.36
  • 出版社:SERSC
  • 摘要:To effectively optimize multi-objective logistics distribution path, the distance and distance related customer satisfaction factor are used as the objective function, a novel kruskal crossover genetic algorithm (KCGA) for multi-objective logistics distribution path optimization is proposed. To test the optimization results, the terminal distribution model and the virtual logistics system operating model are built. Experiment results show that, compared with basic genetic algorithm (GA), the run time of KCGA takes a slightly higher. But the average distribution distance and the best distribution distance are reduced by 6%-8%. Achieve the goal of multi-objective logistics distribution path optimization.
  • 关键词:logistics distribution; multi-objective; optimization; kruskal; crossover
国家哲学社会科学文献中心版权所有