期刊名称:International Journal of Multimedia and Ubiquitous Engineering
印刷版ISSN:1975-0080
出版年度:2015
卷号:10
期号:11
页码:69-84
DOI:10.14257/ijmue.2015.10.11.07
出版社:SERSC
摘要:Most of pedestrian inertial navigation system estimates displacement based on the integration of inertial sensors measurements. However, due to low-cost sensors and pedestrian dead reckoning inherent characteristics these systems provide huge location estimation errors. To suppress some of these limitations we propose a pedestrian inertial navigation system based on low-cost sensors and on information fusion and learning techniques. The proposed system introduces a step characterization module that characterizes the step according to the activity that the pedestrian is performing. This module performs three characterizations: terrain, direction and length. Thus, in this work are presented and evaluated several machine learning approaches that perform the terrain characterization. The inclusion of this machine learning module led to a significantly better performance of the pedestrian inertial navigation system.