首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:An Improved Semi-supervised Fuzzy Clustering Algorithm
  • 本地全文:下载
  • 作者:Kai Li ; Yufei Zhou
  • 期刊名称:International Journal of Computer and Information Technology
  • 印刷版ISSN:2279-0764
  • 出版年度:2013
  • 卷号:2
  • 期号:4
  • 页码:663
  • 出版社:International Journal of Computer and Information Technology
  • 摘要:Semi-supervised clustering is an important method which can improve clustering performance by introducing partial supervised information. This paper mainly studies the semi-supervised fuzzy clustering based on Mahalanobis distance and Gaussian Kernel for SCAPC algorithm. Here, we give a new semi-supervised fuzzy clustering objective function. By solving the optimization problem with above objective function, we obtain a semi-supervised fuzzy clustering algorithm F-SCAPC which includes F(M)-SCAPC and F(K)-SCAPC. And we do experimental research for proposed algorithm F-SCAPC using the selected standard data set and the artificial data set. Besides, we compare performance of presented algorithm F-SCAPC with one of FCM, CA, AFFC, KCA, KFCM-F and SCAPC algorith ms. From the results, we can see that F-SCAPC is effective in the convergence speed and the clustering accuracy
  • 关键词:Semi-supervised clustering; ; Pairwise constraints ; ; ; Mahalanobis distance; Gaussian Kernel
国家哲学社会科学文献中心版权所有