期刊名称:Journal of Intelligent Learning Systems and Applications
印刷版ISSN:2150-8402
电子版ISSN:2150-8410
出版年度:2014
卷号:06
期号:01
页码:35-44
DOI:10.4236/jilsa.2014.61004
语种:English
出版社:Scientific Research Publishing
摘要:In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.