首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:An Overview of Principal Component Analysis
  • 本地全文:下载
  • 作者:Sasan Karamizadeh ; Shahidan M. Abdullah ; Azizah A. Manaf
  • 期刊名称:Journal of Signal and Information Processing
  • 印刷版ISSN:2159-4465
  • 电子版ISSN:2159-4481
  • 出版年度:2013
  • 卷号:04
  • 期号:03
  • 页码:173-175
  • DOI:10.4236/jsip.2013.43B031
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:The principal component analysis (PCA) is a kind of algorithms in biometrics. It is a statistics technical and used orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables. PCA also is a tool to reduce multidimensional data to lower dimensions while retaining most of the information. It covers standard deviation, covariance, and eigenvectors. This background knowledge is meant to make the PCA section very straightforward, but can be skipped if the concepts are already familiar.
  • 关键词:Biometric; PCA; Eigenvector; Covariance; Standard Deviation
国家哲学社会科学文献中心版权所有