首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Ensuring Quality of Random Numbers from TRNG: Design and Evaluation of Post-Processing Using Genetic Algorithm
  • 本地全文:下载
  • 作者:Jose J. Mijares Chan ; Parimala Thulasiraman ; Gabriel Thomas
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2016
  • 卷号:04
  • 期号:04
  • 页码:73-92
  • DOI:10.4236/jcc.2016.44007
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Random numbers generated by pseudo-random and true random number generators (TRNG) are used in a wide variety of important applications. A TRNG relies on a non-deterministic source to sample random numbers. In this paper, we improve the post-processing stage of TRNGs using a heuristic evolutionary algorithm. Our post-processing algorithm decomposes the problem of improving the quality of random numbers into two phases: (i) Exact Histogram Equalization: it modifies the random numbers distribution with a specified output distribution; (ii) Stationarity Enforcement: using genetic algorithms, the output of (ii) is permuted until the random numbers meet wide-sense stationarity. We ensure that the quality of the numbers generated from the genetic algorithm is within a specified level of error defined by the user. We parallelize the genetic algorithm for improved performance. The post-processing is based on the power spectral density of the generated numbers used as a metric. We propose guideline parameters for the evolutionary algorithm to ensure fast convergence, within the first 100 generations, with a standard deviation over the specified quality level of less than 0.45. We also include a TestU01 evaluation over the random numbers generated.
  • 关键词:True Random Number Generators;Genetic Algorithms;Auto-Correlation;Entropy;Power Spectral Density
国家哲学社会科学文献中心版权所有