首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:A Comparison of Malware Detection Techniques Based on Hidden Markov Model
  • 本地全文:下载
  • 作者:Saja Alqurashi ; Omar Batarfi
  • 期刊名称:Journal of Information Security
  • 印刷版ISSN:2153-1234
  • 电子版ISSN:2153-1242
  • 出版年度:2016
  • 卷号:07
  • 期号:03
  • 页码:215-223
  • DOI:10.4236/jis.2016.73017
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Malware is a software which is designed with an intent to damage a network or computer resources. Today, the emergence of malware is on boom letting the researchers develop novel techniques to protect computers and networks. The three major techniques used for malware detection are heuristic, signature-based, and behavior based. Among these, the most prevalent is the heuristic based malware detection. Hidden Markov Model is the most efficient technique for malware detection. In this paper, we present the Hidden Markov Model as a cutting edge malware detection tool and a comprehensive review of different studies that employ HMM as a detection tool.
  • 关键词:Malware;HMM;Detection Tool;Obfuscation Techniques;Metamorphic
国家哲学社会科学文献中心版权所有