首页    期刊浏览 2024年09月19日 星期四
登录注册

文章基本信息

  • 标题:Hyperglucagonemia in an animal model of insulin- deficient diabetes: what therapy can improve it?
  • 本地全文:下载
  • 作者:Fabrizio Barbetti ; Carlo Colombo ; Leena Haataja
  • 期刊名称:Clinical Diabetes and Endocrinology
  • 印刷版ISSN:2055-8260
  • 出版年度:2016
  • 卷号:2
  • 期号:1
  • 页码:11
  • DOI:10.1186/s40842-016-0029-5
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Intra-islet insulin contributes to alpha-cell suppression. Akita mice carry a toxic-gain-of- function Ins2 gene mutation encoding proinsulin-C(A7)Y, similar to that described in human Mutant Ins-gene induced Diabetes of Youth, which decreases intra-islet insulin. Herein, we examined Akita mice for examination of circulating insulin and circulating glucagon levels. The possibility that loss of intra-islet suppression of alpha-cells, with increased circulating glucagon, contributes to diabetes under conditions of intra-islet insulin deficiency, raises questions about effective treatments that may be available. Blood glucose, plasma insulin, C-peptide I, C-peptide II, and glucagon were measured at various times during development of diabetes in Akita mice. We also used Akita- like hProC(A7)Y-CpepGFP transgenic mice in Ins2 +/+ , Ins2 +/− and Ins2 −/− genetic backgrounds (providing animals with greater or lesser defects in islet insulin production, respectively) in order to examine the relative abundance of immunostainable intra-islet glucagon-positive and insulin-positive cells. Similar measurements were made in Akita mice. Finally, the effects of treatment with insulin, exendin-4, and leptin on blood glucose were then compared in Akita mice. Interestingly, total insulin levels in the circulation were not frankly low in Akita mice, although they did not rise appropriately with the onset of hyperglycemia. By contrast, in severely diabetic Akita mice at 6 weeks of age, circulating glucagon levels were significantly elevated. Additionally, in Ins2 +/− and Ins2 −/− mice bearing the Akita-like hProC(A7)Y-CpepGFP transgene, development of diabetes correlated with an increase in the relative intra-islet abundance of immunostainable glucagon-positive cells, and a similar observation was made in Akita islets. In Akita mice, whereas a brief treatment with exendin-4 resulted in no apparent improvement in hyperglycemia, leptin treatment resulted in restoration of normoglycemia. Curiously, leptin treatment also suppressed circulating glucagon levels. Loss of insulin-mediated intra-islet suppression of glucagon production may be a contributor to hyperglycemia in Akita mice, and leptin treatment appears beneficial in such a circumstance. This treatment might also be considered in some human diabetes patients with diminished insulin reserve.
  • 关键词:C-peptide I ; C-peptide II ; Glucagon ; Exendin-4
国家哲学社会科学文献中心版权所有