摘要:The combination of Raman and Infrared spectroscopic signatures were used to find the different vibrational modes of individual carotenoid as their spectral fingerprint. Both have been previously demonstrated to be highly useful methodology for the identification and/or typing of microorganisms. In this study, we set out to evaluate whether these technologies could be applied to detect the presence of carotenoids in psychrotrophic bacterial isolates. FTIR and Raman spectra of four psychrotrophic bacteria viz. Kocuria rosea, K. turfanensis, Sanguibacter suarezii and Planococcus maritimus were examined during the investigation. FTIR spectra bands at 1653-1661cm-1 in different samples were assigned as part of chlorophyll, 1424-1426 cm-1 as -C-H- (CH2) bending vibration from methylene of carotenoids or lycopene, 1366-1367 cm-1 band as the -ionone ring of β-carotene due to the C-H, (–CH3) symmetrical bending. Interestingly, Raman spectra revealed intense Raman bands in the range of 1511-1530, 1153-1159 and 1003-1010 cm-1 representing bacterial carotenoids. We hypothesize the biosynthesis of carotenoid as adaptive strategy to cope up inhospitable cold environments of Leh and Ladakh. The strong, scattering bands by different isolates attributable to ν(C=C) phase stretching, ν(C-C) and δ(C-CH3) methyl components systems, which could be probably membrane-associated C50 carotenoids. Their high intensities are due to resonance enhancement. It can be concluded that Raman spectroscopy is a sensitive and convenient detection tool for typing of the bacterial biomarkers with less time consumption