首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A nondestructive method for fish freshness determination with electronic tongue combined with linear and non-linear multivariate algorithms
  • 本地全文:下载
  • 作者:Han F. ; Huang X. ; Teye E.
  • 期刊名称:Czech Journal of Food Sciences
  • 印刷版ISSN:1212-1800
  • 电子版ISSN:1805-9317
  • 出版年度:2014
  • 卷号:32
  • 期号:6
  • 页码:532-537
  • DOI:10.17221/88/2014-CJFS
  • 出版社:Czech Academy of Agricultural Sciences
  • 摘要:Electronic tongue coupled with linear and non-linear multivariate algorithms was attempted to address the drawbacks of fish freshness detection. Parabramis pekinensis fish samples stored at 4°C were used. Total volatile basic nitrogen (TVB-N) and total viable count (TVC) of the samples were measured. Fisher liner discriminant analysis (Fisher LDA) and support vector machine (SVM) were applied comparatively to classify the samples stored at different days. The results revealed that SVM model was better than Fisher LDA model with a higher identification rate of 97.22% in the prediction set. Partial least square (PLS) and support vector regression (SVR) were applied comparatively to predict the TVB-N and TVC values. The quantitative models were evaluated by the root mean square error of prediction (RMSEP) and the correlation coefficient in the prediction set ( R pre). The results revealed that SVR model was superior to PLS model with RMSEP = 5.65 mg/100 g, R pre = 0.9491 for TVB-N prediction and RMSEP = 0.73 log CFU/g, R pre = 0.904 for TVC prediction. This study demonstrated that the electronic tongue together with SVM and SVR has a great potential for a convenient and nondestructive detection of fish freshness.
  • 关键词:fish quality; taste sensors; nondestructive detection; support vector machine; support vector regression; chemical and microbiological analyses
国家哲学社会科学文献中心版权所有