首页    期刊浏览 2025年06月23日 星期一
登录注册

文章基本信息

  • 标题:Determination of Optimal Tightened Normal Tightened Plan Using a Genetic Algorithm
  • 本地全文:下载
  • 作者:Sundaram, Sampath ; Parthasarathy, Deepa S
  • 期刊名称:Journal of Modern Applied Statistical Methods
  • 出版年度:2016
  • 卷号:15
  • 期号:1
  • 页码:47
  • 出版社:Wayne State University
  • 摘要:Designing a tightened normal tightened sampling plan requires sample sizes and acceptance number with switching criterion. An evolutionary algorithm, the genetic algorithm, is designed to identify optimal sample sizes and acceptance number of a tightened normal tightened sampling plan for a specified consumer’s risk, producer’s risk, and switching criterion. Optimal sample sizes and acceptance number are obtained by implementing the genetic algorithm. Tables are reported for various choices of switching criterion, consumer’s quality level, and producer’s quality level.
  • 关键词:tightened normal tightened sampling plan; average outgoing quality; switching criterion; genetic algorithm.
国家哲学社会科学文献中心版权所有