期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:11
页码:E1545-E1554
DOI:10.1073/pnas.1601678113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID’s structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.