首页    期刊浏览 2024年09月12日 星期四
登录注册

文章基本信息

  • 标题:Three-dimensional bioprinting of thick vascularized tissues
  • 本地全文:下载
  • 作者:David B. Kolesky ; Kimberly A. Homan ; Mark A. Skylar-Scott
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:12
  • 页码:3179-3184
  • DOI:10.1073/pnas.1521342113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.
  • 关键词:bioprinting ; stem cells ; vasculature ; tissues ; biomaterials
国家哲学社会科学文献中心版权所有