首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Neuronal profilins in health and disease: Relevance for spine plasticity and Fragile X syndrome
  • 本地全文:下载
  • 作者:Kristin Michaelsen-Preusse ; Sabine Zessin ; Gayane Grigoryan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:12
  • 页码:3365-3370
  • DOI:10.1073/pnas.1516697113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Learning and memory, to a large extent, depend on functional changes at synapses. Actin dynamics orchestrate the formation of synapses, as well as their stabilization, and the ability to undergo plastic changes. Hence, profilins are of key interest as they bind to G-actin and enhance actin polymerization. However, profilins also compete with actin nucleators, thereby restricting filament formation. Here, we provide evidence that the two brain isoforms, profilin1 (PFN1) and PFN2a, regulate spine actin dynamics in an opposing fashion, and that whereas both profilins are needed during synaptogenesis, only PFN2a is crucial for adult spine plasticity. This finding suggests that PFN1 is the juvenile isoform important during development, whereas PFN2a is mandatory for spine stability and plasticity in mature neurons. In line with this finding, only PFN1 levels are altered in the mouse model of the developmental neurological disorder Fragile X syndrome. This finding is of high relevance because Fragile X syndrome is the most common monogenetic cause for autism spectrum disorder. Indeed, the expression of recombinant profilins rescued the impairment in spinogenesis, a hallmark in Fragile X syndrome, thereby linking the regulation of actin dynamics to synapse development and possible dysfunction.
  • 关键词:actin ; spinogenesis ; FXS ; FMRP ; profilin
国家哲学社会科学文献中心版权所有