期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:13
页码:E1787-E1795
DOI:10.1073/pnas.1522159113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Most Escherichia coli promoters initiate transcription with a purine 7 or 8 nt downstream from the –10 hexamer, but some promoters, including the ribosomal RNA promoter rrnB P1, start 9 nt from the –10 element. We identified promoter and RNA polymerase determinants of this noncanonical rrnB P1 start site using biochemical and genetic approaches including mutational analysis of the promoter, Fe2+ cleavage assays to monitor template strand positions near the active-site, and Bpa cross-linking to map the path of open complex DNA at amino acid and nucleotide resolution. We find that mutations in several promoter regions affect transcription start site (TSS) selection. In particular, we show that the absence of strong interactions between the discriminator region and σ region 1.2 and between the extended –10 element and σ region 3.0, identified previously as a determinant of proper regulation of rRNA promoters, is also required for the unusual TSS. We find that the DNA in the single-stranded transcription bubble of the rrnB P1 promoter complex expands and is “scrunched” into the active site channel of RNA polymerase, similar to the situation in initial transcribing complexes. However, in the rrnB P1 open complex, scrunching occurs before RNA synthesis begins. We find that the scrunched open complex exhibits reduced abortive product synthesis, suggesting that scrunching and unusual TSS selection contribute to the extraordinary transcriptional activity of rRNA promoters by increasing promoter escape, helping to offset the reduction in promoter activity that would result from the weak interactions with σ.
关键词:RNA polymerase ; transcription start site selection ; open complex scrunching ; ribosomal RNA promoters ; promoter escape