首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  • 本地全文:下载
  • 作者:Steven L. Brunton ; Joshua L. Proctor ; J. Nathan Kutz
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:15
  • 页码:3932-3937
  • DOI:10.1073/pnas.1517384113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.
  • 关键词:dynamical systems ; machine learning ; sparse regression ; system identification ; optimization
国家哲学社会科学文献中心版权所有