首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Internal and external components of the bacterial flagellar motor rotate as a unit
  • 本地全文:下载
  • 作者:Basarab G. Hosu ; Vedavalli S. J. Nathan ; Howard C. Berg
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:17
  • 页码:4783-4787
  • DOI:10.1073/pnas.1511691113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Most bacteria that swim, including Escherichia coli, are propelled by helical filaments, each driven at its base by a rotary motor powered by a proton or a sodium ion electrochemical gradient. Each motor contains a number of stator complexes, comprising 4MotA 2MotB or 4PomA 2PomB, proteins anchored to the rigid peptidoglycan layer of the cell wall. These proteins exert torque on a rotor that spans the inner membrane. A shaft connected to the rotor passes through the peptidoglycan and the outer membrane through bushings, the P and L rings, connecting to the filament by a flexible coupling known as the hook. Although the external components, the hook and the filament, are known to rotate, having been tethered to glass or marked by latex beads, the rotation of the internal components has remained only a reasonable assumption. Here, by using polarized light to bleach and probe an internal YFP-FliN fusion, we show that the innermost components of the cytoplasmic ring rotate at a rate similar to that of the hook.
  • 关键词:Escherichia coli ; C ring ; polarized fluorescence bleaching
国家哲学社会科学文献中心版权所有