首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Relationships among CFTR expression, HCO3− secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies
  • 本地全文:下载
  • 作者:Viral S. Shah ; Sarah Ernst ; Xiao Xiao Tang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:19
  • 页码:5382-5387
  • DOI:10.1073/pnas.1604905113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10–50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl− secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3− secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3− at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR+/− or CFTR+/∆F508) expressed CFTR and secreted HCO3− at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3− secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl− secretion, the amount of CFTR is rate-limiting for HCO3− secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.
  • 关键词:cystic fibrosis ; gene therapy ; host defense ; pig ; epithelia
国家哲学社会科学文献中心版权所有