首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates
  • 本地全文:下载
  • 作者:Javier Perez-Saez ; Theophile Mande ; Natalie Ceperley
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:23
  • 页码:6427-6432
  • DOI:10.1073/pnas.1602251113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso’s highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed.
  • 关键词:freshwater snails ; water-based disease ; infection controls ; environmental monitoring
国家哲学社会科学文献中心版权所有