首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Gender Prediction for Expert Finding Task
  • 本地全文:下载
  • 作者:Daler Ali ; Malik Muhammad Saad Missen ; Nadeem Akhtar
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2016
  • 卷号:7
  • 期号:5
  • DOI:10.14569/IJACSA.2016.070525
  • 出版社:Science and Information Society (SAI)
  • 摘要:Predicting gender by names is one of the most interesting problems in the domain of Information Retrieval and expert finding task. In this research paper, we propose a machine learning approach for gender prediction task. We propose a new feature, that is, combination of letters in names which gives 86.54% accuracy. Our data collection consists of 3000 Urdu language names written using English Alphabets. This technique can be used to extract names from email addresses and hence is also valid for emails. To the best of our knowledge, it is the first- ever attempt for predicting gender from Pakistani (Urdu) names written using English alphabets.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Urdu; Semantic Web; Gender Prediction; Expert Profiling; Machine Learning
国家哲学社会科学文献中心版权所有