首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Diagnosis of Chronic Kidney Disease Using Machine Learning Algorithms
  • 本地全文:下载
  • 作者:S.Ramya ; Dr. N.Radha
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2016
  • 卷号:4
  • 期号:1
  • 页码:812
  • DOI:10.15680/IJIRCCE.2016.0401049
  • 出版社:S&S Publications
  • 摘要:Chronic Kidney Disease (CKD) is a gradual decrease in renal function over a period of several months or years. Diabetes and high blood pressure are the most common causes of chronic kidney disease. The main object ive of this work is to determine the kidney function failure by applying the classification algorithm on the test result obtained from the patient medical report. The aim of this work is to reduce the diagnosis time and to improve the diagnosis accuracy us ing classification algorithms. The proposed work deals with classification of different stages in chronic kidney disease according to its severity. The experiment is performed on different algorithms like Back - Propagation Neural Network, Radial Basis Funct ion and Random Forest . The experimenta l results show that the Radial b asis f unction algorithm gives better result than the other classification algorithms and produce s 85.3% accuracy
  • 关键词:Chronic Kidney Disease (CKD); Data mining; Machine Learning (ML); Back-Propagation Neural Network; Radial Basis Function and Random Forest
国家哲学社会科学文献中心版权所有