首页    期刊浏览 2025年09月14日 星期日
登录注册

文章基本信息

  • 标题:Analyzing Prediction Accuracy for Small Scale Log Files Using Web Usage Mining Approaches
  • 本地全文:下载
  • 作者:C.Thavamani ; A.Rengarajan
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2016
  • 卷号:4
  • 期号:2
  • 页码:2060
  • DOI:10.15680/IJIRCCE.2016.0402057
  • 出版社:S&S Publications
  • 摘要:This paper emphasizes the user future request prediction using small number of previous log files without affecting the prediction accuracy level. The web usage mining techniques are used to analyze the web usage patterns for a web site. The user access log is used to fetch the user access patterns. The access patterns are used in the prediction process. Markov model and all KthMarkov model are used in Web prediction. The framework can improve the prediction time without compromising prediction accuracy. The proposed system is to compare the prediction accuracy with the markov model, ARM, ARM-SF. The system improves the accuracy with scalability considerations. Finally the result shows which would have better prediction accuracy
  • 关键词:Future Request Prediction; log files with small size; Association rule mining (ARM); Association rule mining with statistical features (ARM-SF); Markovmodel
国家哲学社会科学文献中心版权所有