首页    期刊浏览 2024年11月15日 星期五
登录注册

文章基本信息

  • 标题:Clustering Data Using Fuzzy C-Means by Determining the Number of Clusters Using Gap Statistics
  • 本地全文:下载
  • 作者:A.Joshi ; V.Subedha ; Vidhya.E
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2016
  • 卷号:4
  • 期号:2
  • 页码:2427
  • DOI:10.15680/IJIRCCE.2016.0402204
  • 出版社:S&S Publications
  • 摘要:Clustering isan unsupervised learning technique which is used to group samples of data based on their features and properties of instances. In any clustering algorithm determining the number of clusters is a significant task which needs to be efficient to group the data with relatively similar characteristics. In this paper we use a method Gap statisticsalgorithmto determine the number of clusters for a Fuzzy C-means clustering algorithm[2]to group the samples of data. In gap statistics method we calculate the error measure for each sample of data and evaluate it with a reference value and depending on the evaluation we obtain the optimal number of clusters which can be applied to the Fuzzy C-means clustering
  • 关键词:Fuzzy C-Means clustering; Gap Statistics; error measure; data characteristics; reference value
国家哲学社会科学文献中心版权所有