首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Slope One and Clustering based Collaborative Filtering Algorithm
  • 本地全文:下载
  • 作者:An Gong ; Yun Gao ; Zhen Gao
  • 期刊名称:International Journal of Hybrid Information Technology
  • 印刷版ISSN:1738-9968
  • 出版年度:2016
  • 卷号:9
  • 期号:4
  • 页码:437-446
  • DOI:10.14257/ijhit.2016.9.4.38
  • 出版社:SERSC
  • 摘要:Collaborative filtering is the most successful and widely used technology in E-commerce recommendation system. However, the traditional collaborative filtering recommendation algorithm faces severe problems of sparse user ratings and poor scala- bility. Slope One algorithm can reduce the sparsity of ratings, improve the recommenda- tion accuracy, but with the growth of users and items, the running time increases rapidly. In this paper, we first introduce the feature similarity into Slope One algorithm, then com- bine it with ants clustering algorithm, thus reliving the influence of rating sparsity, im- proving the searching speed, and reducing the searching costs. Experimental results show that the new algorithm can efficiently improve recommendation quality.
  • 关键词:Slope One; clustering; recommendation system; collaborative filtering; ; score prediction
国家哲学社会科学文献中心版权所有