首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Content-Based Image Retrieval Improved by Incorporating Semantic Annotation via Query Expansion
  • 本地全文:下载
  • 作者:Guoqing Xu ; Jian Li ; Chunyu Xu
  • 期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
  • 印刷版ISSN:2005-4254
  • 出版年度:2015
  • 卷号:8
  • 期号:12
  • 页码:59-66
  • DOI:10.14257/ijsip.2015.8.12.07
  • 出版社:SERSC
  • 摘要:Automatic image annotation (AIA) is expected to be a promising way to improve the performance of content-based image retrieval (CBIR). However, current image annotation results are always incomplete and noisy, and far from practical usage. In this paper, we incorporate semantic annotations into CBIR via query expansion scheme to improve retrieval accuracy. In the proposed method, semantic annotations of test images are obtained using a visual nearest-neighbor-based annotation model. And both visual features and annotation keywords are used to represent images. The similarity between two images is determined by their visual similarity and semantic similarity. The method is evaluated on the well-known Pascal VOC 2007 dataset using standard performance evaluation metric. The experimental results indicate that the performance of CBIR can be improved by incorporating semantic annotation via query expansion.
  • 关键词:AIA; CBIR; query expansion; semantic similarity
国家哲学社会科学文献中心版权所有