首页    期刊浏览 2025年08月18日 星期一
登录注册

文章基本信息

  • 标题:Variational Bayesian Inference Based Image Inpainting using Gamma Distribution Prior
  • 本地全文:下载
  • 作者:Rohit Sain ; Vikas Mittal ; Vrinda Gupta
  • 期刊名称:International Journal of Signal Processing, Image Processing and Pattern Recognition
  • 印刷版ISSN:2005-4254
  • 出版年度:2015
  • 卷号:8
  • 期号:12
  • 页码:207-216
  • DOI:10.14257/ijsip.2015.8.12.20
  • 出版社:SERSC
  • 摘要:Variational Bayesian (VB) inference is the latest iterative method for prediction of data in machine learning. It provides the solution for intractable integration in Bayesian methodology. In this paper, a simple VB linear regression is applied for prediction of the damaged pixels in an image. Bayesian linear regression model is used for prediction of the pixels. For this neighbor pixels are used as training data to generate the parameters of the prediction function. Now using this prediction function, damaged pixels are predicted and incorporated into the image. Proposed method is linear while image is a non-linear object, generally. Hence, for linearity, a small image window size is used to avoid the nonlinearities in image.
  • 关键词:Bayesian linear regression; Variational approximation; Gamma ; Distribution; Image Inpainting
国家哲学社会科学文献中心版权所有