首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Study on a Novel Data Classification Method Based on Improved GA and SVM Model
  • 本地全文:下载
  • 作者:Jing Huo ; Yuxiang Zhao
  • 期刊名称:International Journal of Smart Home
  • 印刷版ISSN:1975-4094
  • 出版年度:2016
  • 卷号:10
  • 期号:5
  • 页码:119-130
  • DOI:10.14257/ijsh.2016.10.5.12
  • 出版社:SERSC
  • 摘要:Support vector machine(SVM) can effectively solve the classification problem with small samples, nonlinear and high dimensions, but it exits the weak generalization ability and low classification accuracy. So an improved genetic algorithm(IGA) is introduced in order to propose a new classification(IGASVM) method based on combining improved GA and SVM model. In the proposed IGASVM method, the self-adaptive control parameter strategy and improving convergence speed strategy are introduced into the GA to keep the diversity of the population, promptly reflect the premature convergence of the individual and escape from the local optimal solution for improving the search performance. Then the improved GA is used to optimize and determine the parameters of the SVM model in order to improve the learning ability and generalization ability of the SVM model for obtaining new classification (IGASVM) method. Finally, the experiment data is selected to test the effectiveness of the proposed IGASVM method. The experiment results show that the improved GA can effectively optimize and determine the parameters of the SVM model, and the IGASVM method takes on the better learning ability, generalization ability and classification accuracy.
  • 关键词:Support vector machine; genetic algorithm; classification; optimization; ; generalization ability; learning ability
国家哲学社会科学文献中心版权所有