首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Online Knowledge-Based Model for Big Data Topic Extraction
  • 本地全文:下载
  • 作者:Muhammad Taimoor Khan ; Mehr Durrani ; Shehzad Khalid
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/6081804
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Lifelong machine learning (LML) models learn with experience maintaining a knowledge-base, without user intervention. Unlike traditional single-domain models they can easily scale up to explore big data. The existing LML models have high data dependency, consume more resources, and do not support streaming data. This paper proposes online LML model (OAMC) to support streaming data with reduced data dependency. With engineering the knowledge-base and introducing new knowledge features the learning pattern of the model is improved for data arriving in pieces. OAMC improves accuracy as topic coherence by 7% for streaming data while reducing the processing cost to half.
国家哲学社会科学文献中心版权所有