首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks
  • 本地全文:下载
  • 作者:P. Noorunnisa Khanam ; MA AlMaadeed ; Sumaaya AlMaadeed
  • 期刊名称:International Journal of Polymer Science
  • 印刷版ISSN:1687-9422
  • 电子版ISSN:1687-9430
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/5340252
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.
国家哲学社会科学文献中心版权所有