首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Cross-domain item recommendation based on user similarity
  • 本地全文:下载
  • 作者:Zhenzhen, Xu ; Jiang, Huizhen ; Kong, Xiangjie
  • 期刊名称:Computer Science and Information Systems
  • 印刷版ISSN:1820-0214
  • 电子版ISSN:2406-1018
  • 出版年度:2016
  • 页码:7-7
  • DOI:10.2298/CSIS150730007Z
  • 出版社:ComSIS Consortium
  • 摘要:Cross-domain recommender systems adopt multiple methods to build relations from source domain to target domain in order to alleviate problems of cold start and sparsity, and improve the performance of recommendations. The majority of traditional methods tend to associate users and items, which neglected the strong influence of friend relation on the recommendation. In this paper, we propose a cross-domain item recommendation model called CRUS based on user similarity, which firstly introduces the trust relation among friends into cross-domain recommendation. Despite friends usually tend to have similar interests in some domains, they share differences either. Considering this, we define all the similar users with the target user as Similar Friends. By modifying the transfer matrix in the random walk, friends sharing similar interests are highlighted. Extensive experiments on Yelp data set show CRUS outperforms the baseline methods on MAE and RMSE.
  • 关键词:cross domain recommendation; trust relation; user similarity; rating prediction; random walk
国家哲学社会科学文献中心版权所有