首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Using Signal Processing Diagnostics to Improve Public Sector Evaluations
  • 作者:Mark Matthews
  • 期刊名称:Asia and the Pacific Policy Studies
  • 电子版ISSN:2050-2680
  • 出版年度:2016
  • 卷号:3
  • 期号:2
  • 页码:320-335
  • DOI:10.1002/app5.110
  • 语种:English
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:False positive test results that overstate intervention impacts can distort and constrain the capability to learn and adapt in governance, and are therefore best avoided. This article considers the benefits of using the Bayesian techniques used in signal processing and machine learning to identify cases of these false positive test results in public sector evaluations. These approaches are increasingly used in medical diagnosis—a context in which (like public policy) avoiding false positive and false negative test results in the evidence base is very important. The findings from a UK National Audit Office review of evaluation quality are used to illustrate how a Bayesian diagnostic framework for use in public sector evaluations could be developed.
  • 关键词:evaluation;Bayesian;governance;capacity‐building;signal processing;signal detection
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有