期刊名称:International Journal of Health Policy and Management
电子版ISSN:2322-5939
出版年度:2013
卷号:1
期号:1
页码:51-55
DOI:10.15171/ijhpm.2013.08
语种:English
出版社:Kerman University of Medical Sciences
其他摘要:Background Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data from Taybad city. Methods This study is a cross-sectional study. We used data from accidents occurring in Taybad between 2007 and 2011. We obtained the data from the Ministry of Health (MOH) and used the time series method with a time lag of one month. After plotting the trend, non stationary data in mean and variance were removed using Box-Cox transformation and a differencing method respectively. The ACF and PACF plots were used to control the stationary situation. Results The traffic accidents in our study had an increasing trend over the five years of study. Based on ACF and PACF plots gained after applying Box-Cox transformation and differencing, data did not fit to a time series model. Therefore, neither ARIMA model nor seasonality were observed. Conclusion Traffic accidents in Taybad have an upward trend. In addition, we expected either the AR model, MA model or ARIMA model to have a seasonal trend, yet this was not observed in this analysis. Several reasons may have contributed to this situation, such as uncertainty of the quality of data, weather changes, and behavioural factors that are not taken into account by time series analysis.
其他关键词:Road Accident ; Time Series ; Trend ; Seasonality ; Assessment