摘要:The Ramsey regression equation specification error test (RESET) furnishes a diagnostic for omitted variables in a linear regression model specification ( i.e. , the null hypothesis is no omitted variables). Integer powers of fitted values from a regression analysis are introduced as additional covariates in a second regression analysis. The former regression model can be considered restricted, whereas the latter model can be considered unrestricted; this first model is nested within this second model. A RESET significance test is conducted with an F -test using the error sums of squares and the degrees of freedom for the two models. For georeferenced data, eigenvectors can be extracted from a modified spatial weights matrix, and included in a linear regression model specification to account for the presence of nonzero spatial autocorrelation. The intuition underlying this methodology is that these synthetic variates function as surrogates for omitted variables. Accordingly, a restricted regression model without eigenvectors should indicate an omitted variables problem, whereas an unrestricted regression model with eigenvectors should result in a failure to reject the RESET null hypothesis. This paper furnishes eleven empirical examples, covering a wide range of spatial attribute data types, that illustrate the effectiveness of eigenvector spatial filtering in addressing the omitted variables problem for georeferenced data as measured by the RESET.