首页    期刊浏览 2025年07月18日 星期五
登录注册

文章基本信息

  • 标题:Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification
  • 本地全文:下载
  • 作者:Lee, Ying-Ying
  • 期刊名称:Econometrics
  • 印刷版ISSN:2225-1146
  • 出版年度:2015
  • 卷号:4
  • 期号:1
  • 出版社:MDPI, Open Access Journal
  • 摘要:Allowing for misspecification in the linear conditional quantile function, this paper provides a new interpretation and the semiparametric efficiency bound for the quantile regression parameter β ( Ï„ ) in Koenker and Bassett (1978). The first result on interpretation shows that under a mean-squared loss function, the probability limit of the Koenker–Bassett estimator minimizes a weighted distribution approximation error, defined as \(F_{Y}(X'\beta(\tau)|X) - \tau\), i.e., the deviation of the conditional distribution function, evaluated at the linear quantile approximation, from the quantile level. The second result implies that the Koenker–Bassett estimator semiparametrically efficiently estimates the quantile regression parameter that produces parsimonious descriptive statistics for the conditional distribution. Therefore, quantile regression shares the attractive features of ordinary least squares: interpretability and semiparametric efficiency under misspecification.
  • 关键词:semiparametric efficiency bounds; misspecification; conditional quantile function; conditional distribution function; best linear approximation
国家哲学社会科学文献中心版权所有