首页    期刊浏览 2024年07月07日 星期日
登录注册

文章基本信息

  • 标题:Typhoon enhancement of N and P release from litter and changes in the litter N:P ratio in a subtropical tidal wetland
  • 本地全文:下载
  • 作者:Weiqi Wang ; Jordi Sardans ; Chuan Tong
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2016
  • 卷号:11
  • 期号:1
  • 页码:014003
  • DOI:10.1088/1748-9326/11/1/014003
  • 语种:English
  • 出版社:IOP Publishing Ltd
  • 摘要:Litter production and decomposition are key processes controlling the capacity of wetland to store and cycle carbon (C) and nutrients. Typhoons deposit large amounts of green and semi-green (between green and withered) plant tissues and withered litter (normal litter) on wetland soils, generating a pulse of litter production. Climatic models project an increase in typhoon intensity and frequency. Elucidating the impacts of typhoons on C, N and P cycles and storage capacities in subtropical and tropical wetland areas is thus important. We analyzed the patterns and changes of litter decomposition after a typhoon in the Minjiang River estuary in southeastern China. Green litter decomposed the fastest, and the loss of mass did not differ significantly between semi-green litter, withered litter and mixed litter (all soil litter after a typhoon). During the decomposition process the remaining green litter had the highest, and withered litter the lowest N and P concentrations. The biomass loss rate of litter during the studied period was related to the initial litter N and P concentrations. Remaining litter generally increased its N:P ratio during decomposition. The ratio of the released N and P was consequently lower than the initial N:P ratio in all litter types. The typhoon enhanced the release of C, N and P from the litter (884, 12.3 and 6 kg ha−1, respectively) by 264 days after the typhoon. The soil was accordingly enriched with organic matter and nutrients for several months, which should favor microbial growth rates (higher C, N and P availability and lower C:nutrient and N:P ratios) and increase the rates of C and nutrient cycling. If the frequency and/or intensity of typhoons increase, a constant increase in the release of N and P to the soil with lower N:P ratios could change the N and P cycles in wetlands and provide better conditions for the spread of fast-growing species.
国家哲学社会科学文献中心版权所有