首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Minimum-acceleration Trajectory Optimization for Humanoid Manipulator Based on Differential Evolution
  • 本地全文:下载
  • 作者:Ren Ziwu ; Li Chunguang and Sun Lining
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2016
  • 卷号:13
  • DOI:10.5772/63070
  • 语种:English
  • 出版社:SAGE Publications
  • 摘要:A humanoid manipulator produces significantly reactive forces against a humanoid body when it operates in a rapid and continuous reaction environment (e.g., playing baseball, ping-pong etc.). This not only disturbs the balance and stability of the humanoid robot, but also influences its operation precision. To solve this problem, a novel approach, which is able to generate a minimum-acceleration and continuous acceleration trajectory for the humanoid manipulator, is presented in this paper. By this method, the whole trajectory of humanoid manipulation is divided into two processes, i.e., the operation process and the return process. Moreover, the target operation point is considered as a particular point that should be passed through. As such, the trajectory of each process is described through a quartic polynomial in the joint space, after which the trajectory planning problem for the humanoid manipulator can be formulated as a global constrained optimization problem. In order to alleviate the reactive force, a fitness function that aims to minimize the maximum acceleration of each joint of the manipulator is defined, while differential evolution is employed to determine the joint accelerations of the target operation point. Thus, a trajectory with a minimum-acceleration and continuous acceleration profile is obtained, which can reduce the effect on the body and be favourable for the balance and stability of the humanoid robot to a certain extent. Finally, a humanoid robot with a 7-DOF manipulator for ping-pong playing is employed as an example. Simulation experiment results show the effectiveness of this method for the trajectory planning problem being studied.
  • 关键词:Trajectory Optimization; Minimum-acceleration Trajectory; Humanoid Manipulator; Differential Evolution
国家哲学社会科学文献中心版权所有