首页    期刊浏览 2025年12月23日 星期二
登录注册

文章基本信息

  • 标题:Forecasting Daily and Sessional Returns of the ISE - 100 Index with Neural Network Models
  • 本地全文:下载
  • 作者:Emin AVCI
  • 期刊名称:Dogus University Journal
  • 印刷版ISSN:1302-6739
  • 电子版ISSN:1308-6979
  • 出版年度:2007
  • 卷号:8
  • 期号:2
  • 页码:128-142
  • 语种:
  • 出版社:Dogus University
  • 摘要:Especially for the last decade, the neural network models have been applied to solve financial problems like portfolio construction and stock market forecasting. Among the alternative neural network models, the multilayer perceptron models are expected to be effective and widely applied in financial forecasting. This study examines the forecasting power multilayer perceptron models for daily and sessional returns of ISE-100 index. The findings imply that the multilayer perceptron models presented promising performance in forecasting the ISE-100 index returns. However, further emphasis should be placed on different input variables and model architectures in order to improve the forecasting performances.
国家哲学社会科学文献中心版权所有