首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:FUSION OF IMAGING SPECTROMETER AND LIDAR DATA USING SUPPORT VECTOR MACHINES FOR LAND COVER CLASSIFICATION IN THE CONTEXT OF FOREST FIRE MANAGEMENT
  • 本地全文:下载
  • 作者:B. Koetz ; F. Morsdorf ; T. Curt
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2007
  • 卷号:XXXVI-7/C50
  • 出版社:Copernicus Publications
  • 摘要:A combination of the two remote sensing systems, imaging spectrometry (IS) and Light Detection And Ranging (LiDAR), is well suited to map fuel types, especially within the complex wildland urban interface. LiDAR observations sample the spatial information dimension describing geometric surface properties. Imaging spectrometry on the other hand samples the spectral dimension, which is sensitive for discrimination of species and surface types. As a non - parametric classifier Support Vector Machines (SVM) are p articularly well adapted to classify data of high dimensionality and from multiple - sources as proposed in this work. The presented approach achieves an improved land cover mapping based on a single SVM classifier combining the spectral and spatial informat ion dimensions provided by imaging spectrometry and LiDAR
  • 关键词:Support Vector Machines; land cover classification; hyperspectral; LiDAR; multi ; - ; sensor fusion
国家哲学社会科学文献中心版权所有