期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2007
卷号:XXXVI-7/C50
出版社:Copernicus Publications
摘要:A combination of the two remote sensing systems, imaging spectrometry (IS) and Light Detection And Ranging (LiDAR), is well suited to map fuel types, especially within the complex wildland urban interface. LiDAR observations sample the spatial information dimension describing geometric surface properties. Imaging spectrometry on the other hand samples the spectral dimension, which is sensitive for discrimination of species and surface types. As a non - parametric classifier Support Vector Machines (SVM) are p articularly well adapted to classify data of high dimensionality and from multiple - sources as proposed in this work. The presented approach achieves an improved land cover mapping based on a single SVM classifier combining the spectral and spatial informat ion dimensions provided by imaging spectrometry and LiDAR
关键词:Support Vector Machines; land cover classification; hyperspectral; LiDAR; multi ; - ; sensor fusion