期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2007
卷号:XXXVI-3/W52
页码:162-168
出版社:Copernicus Publications
摘要:3D modeling and visualization of real world scenes is an important topic of research with applications in many areas such as virtual museums, game and entertainment, architecture description and restoration, virtual reality, archaeology, many industrial applications and last but not least important tourist applications. 3D modeling and visualization are the creation of a computer representation of real world environments that merges together data coming from one or more sensors. The representation of the geometric and texture information of a real scene is a very challenging task due to the acquisition of large-scale data, complexity of the geometry and difficulties to cope with reflectance properties of the objects and variations in the lighting in the scene. Two approaches, depending on the type of sensor (terrestrial laser scanner or digital cameras), are typically used to face the 3D reconstruction problem. Laser scanners provide 3D metric information in real time through an array of coordinates: range images. Digital cameras are used to acquire high-resolution images of the scenes. These images are 2D arrays of reflected light from objects but do not contain any explicit metric information. Further processing is necessary, to calibrate cameras and compute 3D models. This paper aims to demonstrate how active and passive sensors can be registered and combined through a hybrid approach to compute 3D models of complex scenes with photo-realistic quality. Particularly, the proposed approach tries to deal with two different images: a high-resolution image acquired with a digital camera and a range image obtained from a laser scanner model using collinearity condition. Our goal is to devise and implement a robust, automatic, and accurate hybrid-technique for registration of both sensors for efficient modeling (geometry) and rendering (radiometry) of complex environments. To this end, we have developed a novel application for laser scanning which allow us to test the approach developed over experimental results
关键词:Cultural Heritage; Laserscanning; Photogrammetry; Sensor Registration; Software Development