期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2005
卷号:XXXVI-8/W27
出版社:Copernicus Publications
摘要:This paper evaluates an inductive learning approach classification technique for vehicle detection and enumeration on very high resolution imagery. It tests pre-processing procedures applied to different images in with different atmospheric conditions and automatic detection algorithms for detection and enumeration. This work contributes to the longer term objective that is beyond the scope of this paper to use vehicles counts to derive indicators of societal activity; this for a number of applications including situation assessments in conflict areas. The work uses Ikonos and Quickbird images collected over Baghdad in pre-war situation and during the Iraq conflict of 2003. Very high resolution imagery is an excellent information source to detect vehicles. The enumeration can be carried out using photo-interpretation techniques. However, this is impractical and relatively expensive. Automatic detection is possible. Image pre-processing is needed
关键词:Remote Sensing; Spatial Information Science; Urban; Calibration; Detection; Automation; High resolution